Fixing that science meme

So you’ve probably seen this meme by now:

Seeing as I am a massive proponent for science, and seeing as the claims on the shirt are broadly correct, you might think I would support this shirt. You’d be wrong! This shirt sucks. Why? Thanks for asking.

This shirt sucks because it fails completely in its supposed effort to convince others to stand up for science. It sucks because it portrays science as something it’s not – doctrine and acceptance of authority. In fact science is exactly the opposite of this – science is a method in which one is encouraged to question authority, to question everything, and to establish via experiment and reason which hypothesis is valid.What would you think of somebody who knew nothing about these topics but accepted the statements on the t-shirt just because they were written there? You’d think they were gullible wouldn’t you. And they would be. Science is about finding interesting questions and coming up with ways to answer them with experiments and proofs. It’s not about believing everything some person with a Nobel prize says.

If we want to encourage people to learn something of science, to stand up for science, this kind of “believe these facts” thing is not going to work. In fact, if you are a real scientist, this shirt will probably make you question each and every supposed fact on it. So lets try to do better, shall we? Let’s redo each line in a way to encourage science, rather than making science look like garbage.

  1. The oblate spheroid model of the Earth works pretty well

OK so more properly we should avoid the topic here entirely, as we are really just feeding the trolls. Nobody has ever really believed the Earth was flat, as they saw the sun (and stars) rise and set. There’s no need to go into eclipses and phases of the moon, or of the methods by which people thousands of years ago measured the radius of the Earth. The “flat earthers” phenomenon is a combination of a few things. One is simple trolling – an attempt to get your attention and exercise the power of charisma. Another is an interesting exercise in open-mindedness. Can you drop everything you know and consider this proposition? It’s really hard, but an interesting exercise. it’s also kinda fun fantasy, personally I like the way it fits into HP Lovecraft’s “The Mountains of Madness” story. Finally, it’s a knee-jerk response to people who push science as doctrine and solely believing authority – an “anti-intellectual” response to memes like the one we are attacking.

2. Maybe some vaccines work

Lets face it.. two words aren’t ever going to be much of a scientific analysis. Here, whether or not “vaccines work” depends entirely on what vaccines we are talking about and what we mean by “work”. This is apparently a hugely controversial and political topic, but often not addressed scientifically. One way you can tell it isn’t addressed scientifically is when no specific vaccine is mentioned. This is like saying “Pills work”. Well yeah, they often do in fact save lives. But that isn’t science yet. Science would be pointing out that maybe the 1976 swine flu vaccine didn’t work. It would be taking a close look at the Salk study of the polio vaccine. How about the remarkably high efficacy of the HPV vaccine in preventing ovarian cancer? Maybe this one should be recommended more strongly. How about the remarkably low efficacy of the Pertussis vaccine? Maybe that one shouldn’t be mandatory. Did somebody add some poisons to a vaccine before it was administered? Obviously we’re not going to get way into any of this here but the point is – you have to encourage people to do some research. Well, you don’t have to, but if your goal is to stand up for science then you do. Leaving room for doubt only encourages people to trust you and check it out for themselves.

3. We’ve been to Titan

Sure, we could talk more about Apollo, about the images of landing sites taken by Russian, Indian, and Chinese satellites, but really this doesn’t capture the imagination as much as some of the more recent accomplishments of interplanetary exploration. Landing on Triton is quite something, but would you believe they landed on a comet? OK so there weren’t any live animals on those missions but they’re still impressive. If we have to talk about the Lunar landing, I like to say that Stanley Kubrick was asked to be the director of a staged moon landing, but being the perfectionist he is – he had them film it on location. Don’t you think it’s a little condescending to assume that the person reading your shirt has some certain belief about the moon landing – and that you know better?

4. Contrails are left by airplanes – but maybe also by UFOs.

How many people identify jets when they see them? I don’t usually. Anyway, the “X isn’t a thing” argument is always terrible. X is a thing. Chemtrails are a thing. Bigfoot is a thing. The question is what kind of thing exactly. Anyway chemtrails went out of fashion in conspiracy writing at least a decade this item should be left off. “Atmospheric chemistry is hard” might be a better replacement.

5. You are alive during a mass extinction.

This seems more interesting to me than climate change. Nobody would argue that climate change is not real, one need only look at a city and see that the climate is different there. Adjust the AC ; climate changed. Ice ages happened. Climates change. But what about the biodiversity? That seems more likely to get peoples attention and more of a reason to study science – to know what we can save and how.


OK so how did we do? A little better perhaps? Well it turns out other people disliked this meme for the same reasons and came up with their own replacements:

I’d say they did pretty well. OK the focus isn’t really science anymore, but do we really need a t-shirt for promoting general science? Possibly not.

Is your linux ubuntu write to USB stick slow?

Linux kernel priorities often assume that your memory and disk operations have priority over USB i/o. This leads to situations where you are waiting for some files to write and your system thinks you aren’t in a hurry.

This trick worked for me, I found it on one of Peter Stevenson’s github pages.  

Copied text follows. Saving here in the blog for safekeeping! You will need “Sudo su” first to write the file. Cheers!!


If your running a x64 bit Ubuntu or other Linux and find USB transfers hang at the end apply this fix:

echo $((16*1024*1024)) > /proc/sys/vm/dirty_background_bytes
echo $((48*1024*1024)) > /proc/sys/vm/dirty_bytes

I suggest you edit your /etc/rc.local file to make this change persistant across reboots.

sudo nano /etc/rc.local

Go to the bottom of the file and leave a space then paste in those two lines.

Save the file with ctrl + x then press y.

To revert the changes enter this in console and remove the lines in /etc/rc.local

echo 0 > /proc/sys/vm/dirty_background_bytes
echo 0 > /proc/sys/vm/dirty_bytes

More info and references:

The Caruanavirus Pawndemic

I’m no conspiracy theorist, which is why when I first heard that the only live sports event in the whole world was the Chess World Champion Candidate’s Tournament in Yekaterinburg, Russia, I chalked it up to lucky a lucky coincidence. An increase in traffic for streamers like Ben Finegold, Naka, Botez, ChessBrahs, etc., for Agadmator, for creators of Grischuk thug life videos, and for others was just an inevitable consequence of current events.

But then — the plans for the Magnus Carlsen Invitational online tournament were announced. Do you expect us to believe that plans for the world’s largest online e-sports tournament ever were so quickly drafted? Or had these plans perhaps been in the works for some time, shelved and waiting for a rapid sequence of pawn moves beginning in Wuhan China? I was forced to ask: Cui Bono?

This is what I found:

Mr Virus himself, seen here with the architect of the Magnus Carlsen Invitational online tournament, and the promoter of G5 opening technologies.

If you don’t see the game plan at this point, it’s clear you aren’t ready to face 1200 players on lichess blitz.

Chess conspirators, hear us now: This world is not your chessboard! We know that Caruana was too close for comfort last time, and that his high level of play rubs off on those around him, especially within 6 feet. And why does FIDE continue to fund massive biological warfare facilities? Why is reaching move 40 the de facto addition of extra time, if not as reference to the tradition of Quarantine? If you don’t believe in fortresses, then why are we all expected to hole up in them during this pawndemic? Is it not perhaps the Bat Defense opening which we should fear in blitz?

What would Capitalism look like?

Mea Culpa

The “C” word in the title is a polemic, which has little to no use in intellectual discourse today. Lets avoid it for the rest of the article.

Why free markets might be a useful

The basic idea, as presented by too many folks to list, attempts to solve a very simple problem, which in turn comes from a very simple assumption: trade is good. Trade is good! OK, so I grow beans, you grow rice. If we trade, we can both eat beans and rice and be healthier. Make sense so far? Now the question becomes- how much rice should I trade for a kilo of beans? This is the problem of price discovery, and its difficulty has lead to an enormous amount of writing on theories of value, theories of price, etc. etc. It gets even more complicated when we are trading hours of labor, derivative products, and other stuff. So, how do we solve it?

One common theory here is that we simply let markets decide prices. This is the efficient market assumption, that allowing people to demonstrate their interests, their wares, and compare to others around them – will enable folks to arrive at a good price that maximizes efficiency for everyone involved. Intelligent people freely participating in markets would lead to an intelligent price discovery.

Sounds great right? It seems plausible and possible. Free markets could help us run our economies more efficiently leading to improved living conditions, education, and eventually a shot at life on Earth surviving.

It’s a great idea perhaps, but sadly – we don’t see it being practiced anywhere. Instead, prices are controlled by centralized organizations, usually in connection with currency issuers. “Borders” are used to prevent goods moving and making sure markets remain inefficient. Trading is regulated and taxed to prevent market price discovery.

So, lets ask now: what would free market price discovery look like?

  1. Market participants, shoppers and traders, would have the opportunity to demonstrate their interest. Gone would be the market where people go in and purchase things for a fixed price, rather – one might expect that the price could change even as items are moved through the store. Fixed prices wouldn’t exist, as supply and demand would determine them dynamically.
  2. Trade through intermediate vehicles, exchange commodities aka “money”, could not favor any parties over any other. This means that fiat currencies would not be used, as these currencies clearly favor the issuer over the regular users. This should not be a surprise, as fiat currencies were basically introduced specifically because of their use in manipulating markets. Clearly, any free market with efficient price discovery would not use such tokens, as they enable the price to be skewed towards the interests of a single party rather than to reflect efficiency or intellgence.
  3. Geographic differences in price would reflect only transportation costs. This means that we wouldn’t see e.g. a gram of cocaine selling for the price of a beer in one place and the price of 50 beers in another, despite transportation of one gram not costing 49 beers. Basically, the free market hypothesis tells us that differences in price from place to place would be exploited by arbitrage and would disappear. If these arbitrageurs are attacked or removed, the market is no longer one in which free trade could facilitate intelligent price discovery. Similarly we wouldn’t see such a difference in prices from place to place in the big mac index, or in real estate, as we do today. Sure, there are some other factors than transportation costs which would enter, however – one could look and see if arbitrage were possible and it it were occuring – to determine if a free market were present.
  4. Marrkets would be public and inclusive. Mandatory licensure, regulation, zoning, customs, and various other practices which prevent our rice farmer from entering a market are things which would not be present in a free market. The goal of a free market is to allow all peoples interests, supply and demand, to be visible so that the most intelligent and efficient price could be agreed upon. If market infrastructure providers show favor to one party or another, such a system is no longer functioning as a free market price discovery mechanism.
  5. Education and information would be prevalent. Clearly, a market wouldn’t work unless the participants know how to use it. This means education as well as information systems that allow it to work. If at some point human society decides to start using free markets as a price discovery mechanism, the systems that are used would have to be designed so the relevant information is immediately accessible to all participants, and the all participants have had the opportunity for the relevant education in how to use the systems.

The “Party Pooper” Interpretation of Quantum Mechanics

A student joked that the interpretations of quantum mechanics which I tend to support are those of a party pooper. At first I didn’t like the connotation, but then I realized hey – why not? Lets turn this into a real thing.

The first thought that crossed my mind was that I’m not in any way spoiling the good party. No way! Not me. The ability to predict basically all of chemistry, the absorption and emission lines of spectroscopy, lasers, transistors, and all this good stuff – still stands. If anything, a reasonable and demystified interpretation of quantum mechanics makes the party all that much better. Heck, even quantum computers, despite the endlessly wrong descriptions that are often given to how they work, are still a possibility for arriving at the party. That was why I didn’t like the term at first.

However, why not consider what she actually meant? She meant that the party was for those who were riding on top of the successes of quantum mechanics and pushing their condescending, pseudoscientific, and just plain fraudulent ideas. What may have begun as a misguided and sure perhaps brilliant marketing scheme by Feynman has become a free-for-all for deceiving students and promoting mysticism where it doesn’t belong. If that’s what the party is about – then yeah, I like the party poopers. I’m not going to call the cops but I will point out it’s time to start cleaning up and if the freeloaders keep hanging around too long I am going to put Kenny G on the stereo at full volume to get them out.

So without further ado lets get started with the basic principles of the Party Pooper Interpretation of Quantum Mechanics

  1. There are always analogies with macroscopic systems to help us understand what is going on with the microscopic systems. There are macroscopic eigenvalue problems, macroscopic probability wavefunctions, and quantizations. An electron behaves in some ways like a hurricane. It has no clearly defined edge, an angular momentum, a direction of motion, and a fairly well defined center. You’re not sure if you are going to get hit by one until it happens.
  2. When we say a system is in a superposition of states, we mean that the system has not yet exhibited characteristics that determine which of the states it is in. Macroscopic systems can also have this behavior, it is a technique of probability to use this construction. We weigh all possibilities with their probabilities to determine the expectation value of a bet.
  3. Words like “particle” imply a certain context of the observer, that the observer is very far from the specific properties of the object. A planet is a good particle in a solar system, until you get close and have to start talking about the details of the geography.
  4. Measurements are always probabilistic, and always collapse a system in the mind of the one making the measurement. A coin is in both of your hands equally and simultaneously, for the purposes of my calculation, until I guess a hand and you show that it is empty. At that moment, the coin’s probability becomes much greater in the other hand. This doesn’t violate causality nor special relativity.
  5. A qubit is in both 0 and 1 state at the same time just in the same way that an ordinary bit is in both the 0 and 1 state at the same time. As soon as either one is measured, we see that it was only 0 or only 1. The difference is that in an ordinary computer or Turing machine the bits are isolated – a read head comes and reads them, and responds with electronic logic gates before looking at the next. In a quantum computer, they are not isolated – they are linked together in a very complex way such that adjusting one qubit can subtly alter many others – even before their state is read.
  6. The beer is in the fridge. Well, you might have to look. As soon as you open the door, the wavefunction will collapse.
  7. If the party is for fermions, the capacity is limited, I will check if you are on the guest list. For bosons, you’re all welcome to come. Keep on coming!

Stellarators 仿星器

A beautiful poster, here’s my transcription:


美国天文学家和物理学家斯必泽 (spitzer) 是早期磁约束聚变研究中较为成功的一位。最初,他没想用磁场把等离子体约束在一个圆形空间里。为解决等离子体两端的泄漏,他没想把两端连接成圆环状。然而线圈产生的环形磁场内侧强,外侧弱,致使正带电粒子向下漂移,电子向上漂移,正负电荷的分离所产生的电场与磁场共同作用的结果,把等里子体想外推,因而不能形成稳定的约束。为了克服正负电粒子的分离,斯必泽巧妙地把圆环状空间扭成8子形,干1951年提出了一种称为仿星器(stellarator)的磁约束装置。等离子体沿8字形绕行一圈,总的漂移被抵消。

仿星器是磁约束聚变装置的一种:一是将螺线圈绕在轴线具有可变空间曲率的圆截面真空室上; 二是在平面轴线真空室上用两种

Einstein: Father of the Electric Universe

Today’s discussion began as follows:

I demand a flamewar. EINSTEIN – GOOD or BAD?

This was in the Electric Universe discussion group on facebook. More to follow on this topic, but for now here’s the conversation as it took place.

Lukas Saul : Father of the Electric Universe

Andrew W. Powell: no

Liran Shoham How you figure?

Lukas Saul Well “popularizer” is more accurate 🙂 The whole paradigm shift of placing light and the electromagnetic field as the definer of metric (the meter and the second) – the electromagnetic field as the background which defines our universe – came about with the advent of relativity. Sure, it was Lorentz and Voigt and others before Einstein who worked out much of the maths (for SR), as he would also point out, but he put it together in a nice package and now we know it’s an electric universe.

Jason Verbelli The exact opposite.
Einstein said space is empty and refused to acknowledge the existence of electricity and magnetism in space. So he came up with nonsense about space bending.
The exact opposite of reality and electric universe. Cmon…

Lukas Saul JI think you are quoting misinformed pop science writers and not Einstein. Einstein said “in so much as space has properties there is an aether”, and he considered the assigment of a metric to each point in space in GR to be an aether theory. Of course the same applies when we assign a property such as magnetic or electric field to any point in space. Rather than refuse to acknowledge E&M, he put E&M ahead and more important even of the sacrosanct Galilean and Cartesian space which was the fashion of the day. Special relativity is about using the wave equations of E&M to create our metric of distance and time. The “space bending” you are referring to is an electromagnetic phenomenon: the definition of a straight line in general relativity is the null geodesic – the path that LIGHT travels. Nobody is throwing out electricity here, in fact it is the exact opposite – electricity and magnetism ARE what defines space-time. Einsteins work of SR and GR are what follows from saying “we live in an electic universe” L

Jason Verbelli L absolutely not. Space and time are not to be linked together. Einsteins work of special relativity in general relativity are complete nonsense.
Autre blast for me to suggest Einstein had anything to do with electric universe model.

Hannes Alfven gave a talk to 500 students in 1982 and at the end mentioned that the people should go for a curriculum and plasma physics.. NOT Relativity.

It is one or the other.
We indeed live in an electric universe. But that is not what Einstein’s crap suggested whatsoever.

“if the velocity of light is even a tiny bit dependent upon the velocity of the light source, then my entire theory of relativity and gravitation is false.” –Einy

Every emission and burst of light is spherical according to Huygens Principle and furthered by the work of Dr. Edward Dowdye.
That’s fear has a center and can propagate on its own. When it does so it is a straight line/rectilinear path.
The Spherical Propagation of Light…/the-spherical-propagation-varying…

The Spherical Propagation/ Varying Speed(s) of Light —…

The Spherical Propagation/ Varying Speed(s) of Light — Steemite

Lukas Saul I think you will be not be disappointed to study basic relativity/electromagnetism theory, it is absolutely essential to understanding the electric universe. Then move on to the technically more difficult job of describing the behavior of ionized gases in these fields as Alfvén suggests. The velocity of light is no more dependent on speed of the source than the velocity of sound is, do you disagree with that? It’s certainly been well established experimentally as well as making complete sense from the perspective of electric universe theory.

Jason Verbelli no I do not agree because the same observations can be explained using other models. Sound is also a spherical emission. Most all waveforms propagate spherically. Doppler shift is misconceived and so is red shift. (As shown by Dr. Edward Dowdye’s brilliant work)

Einstein has nothing to do with the Electric Universe. That’s an insult

Jason Verbelli Lukas Saul Real Math and Physics:…/ViewGraph_English.pdf

Jason Verbelli Lukas Saul Extinction Shift Principle (Full Book)…/1WZ2euMIRREBRvn0ZpBlQoD…/view

Extinction Shift Book Full – Dr. Edward Dowdye.pdf L

Lukas Saul Thanks for the interesting reading there, the Löschvershibungsprincip et al. 🙂 While I admire the ambition and it is certainly possible to do what is described: “Applying the Galilean transformation without the need for tweaking the scales of measurement and warping the units of time”, such a project has limited utility. In the end it makes sense for our coordinate systems to match up with things like meter sticks and atomic clocks – these systems are electromagnetic and thus are warped by changes in the electromagnetic properties which hold them together. Special relativity does not deny that it is possible to label the world with a Galilean frame, it merely describes how REAL clocks and meter sticks are indeed held together with electromagnetic forces and SR describes the properties of reference frames built with such objects. In some sense Dowdye is suggesting that we can leave aside the electromagnetic universe and what it does to clocks and meter sticks and return to Newtonian absolute space. There’s nothing stopping us from doing that, it’s another tool in the toolbox. However it doesn’t invalidate the very useful tools of the meter and second as defined in the dictionary according to the principles of relativity, as popularized by Einstein. Those tools should also be in our toolbox, especially in this forum.

On the Gravitational Wave Detections

Hello everyone!  Some people have asked me to post about my opinion on the recent claims that gravitational waves have been observed.  There are a lot of things about these discoveries worth pointing out in such an informal arena as this one, so sure why not.  I am partially adopting an earlier post on this topic, so my apologies for any disjoint trains of thought.

First off, lets begin by pointing out that these claims are sensational.  Really amazing!  To claim observation of something as exotic as merging black holes, using a new kind of exotic sensing device which has never detected anything before, is nothing short of sensational.

You may have surmised by now that I have been somewhat skeptical about these claims.  This is really the only move available to a scientist.  One has to be skeptical.  This is called being a scientist.  If you are religious or a fanatic, you will believe what people tell you based on their clothing, reputation, or credentials.  There is a well known logical fallacy known as “appeal to authority”.  If you are a scientist, you will question what they tell you and try to come up with your own experiments or models to verify or confirm what they told you.   To a scientist, a Nobel prize awarded to some theory or another is a reason to pay attention to that theory –  a good reputation is a reason to take a look.  However it says nothing about the validity of the theory or observations.  Those must come with understanding and experiment.

Big Science

This leads us to the general conundrum of what they call “big science”.  This kind of science includes all experiments that are expensive or difficult enough that they can’t be repeated easily.  For traditional science, repeating an experiment is the very heart of progress and the scientific method.  However, for these “big science” experiments, we cannot so do.  Does this mean we should reject all results from big science?  Not at all.  It just means that the science is a work in progress.  It means we are waiting for the next round of experimenters to verify the results, and it means that we still have work to do.  Good stuff!

Gravitational Waves – We all knew they are real 

OK so on to the gravitational waves.  The first thing that needs to be said is that gravitational waves are real.  There is no denying this.  Gravity is, no matter what formulation you prefer, capable of producing a force, or at least one that looks like a force to observers.  This force is at least somewhat related to the direction of a source.  Therefore, if we move the source  – we have changed the force field.  This change in force field will propagate outwards and we can call it a gravitational wave.  For the electromagnetic force, this is what we call light – exactly that thing that happens when we accelerate a charge.  All light of all frequencies is created by acceleration of charge in exactly this manner.  Similarly, we know that moving an active gravitational source (like any mass) we will change the force field and produce a gravitational wave.  At question here is not whether gravitational waves exist, we know they do.  There is no way they couldn’t.  What is at question is the details about how they can be measured with what apparatus, and how strong they are – and what objects have created them.  Different types of General Relativistic theories might produces certain different magnitudes of waves for example, while a modified Newtonian theory might produce others.  Different accelerated sources will also of course produce different signatures in gravitational radiation.  What kind of acceleration of masses exists around us to observe is another question.  The speed of propagation is another interesting question, and one that remains to some degree open.  We won’t discuss it further here but interested readers are recommended to look at the excellent papers debates by Steve Carlip and Tom Van Flandern.  

OK lets get on to some problems with the LIGO experiment and its ilk.  The biggest problem in my mind is that the experiment is uncalbibrated.    To somebody who has worked on scientific instruments, this is shocking.  However, it may be unsurmountable.  The problem basically is that the instrument has not looked at any control source.   Consider for example Galileo’s first telescope.  To see that it worked, he focused on a far off mountain or a ship.  This enabled confidence in his new device, which only then did he point towards the heavens.  To have trusted some device pointed at the heavens when nothing else had ever been viewed through it, well this is what we are told to do by the authors of the LIGO papers.   Particle detectors are calibrated with known particle beams, just as voltmeters are calibrated with known voltages to assure that they are accurate.  So, is it possible to calibrate these detectors with a local source?

Calibration attempt:  drop a 100 kg mass onto the ground
Lets look at the gravitational radiation which this will create and compare it to the radiation from the source claimed by Abbott et al.  Sure, a 100kg object is really massive, but we’re talking big science here.
First off there is the difference in mass.  The 100 kg test mass is 6*10^{29} times smaller than the 30 solar mass black hole.  That’s going to make a lot less radiation right?  Well yeah.  Especially because the radiated power is proportional to the square of the source.  That’s a factor of 3.6*10^{59}.
How about the distance?  Well a light year is 9.5*10^{12} km.  1.3 billion light years is therefore 1.3*10^{22} km.  This supposed black hole merger event is 1.3*10^{25} times further away than our test mass dropping on the ground one meter away.  Oh, and don’t forget that the intensity of the radiation falls off as the cube of the distance from dipole sources.  (Edit:  gravitational radiation is always quadrupolar so the field may fall off even faster.  However some have argued that the power falls of as the square of the distance, and that this power is directly measured by the LIGO device, which if true would change the conclusions here). The intensity attenuation from our black hole merger due to distance from source will be a whopping 2.2*10^{75} times larger than the attenuation of radiation from our test mass.
The only thing missing from our back of the envelope calculation here is the acceleration applied to the mass.  After all, it is acceleration of a source which causes radiation.  A stationary charge does not light make, nor does a stationary mass emit gravitational waves.  For the test mass, lets assume we are going from 10m/s to 0m/s in 0.001 seconds when the thing hits the ground (because it’s soft ground, the test mass is soft, and it takes some time to stop the test mass).  That’s an acceleration of 10000 m/s/s or about 1000 Gs (commercial crash test accelerometers go to 2000Gs or higher).
For the black holes it isn’t too hard to put an estimate on the acceleration.  The Schwarzchild radius of the black holes they report as about 210 km.  This means when they touch, the centers of mass will be 420km apart.  Using this one estimates using the Newtonian limit of about twenty billion m/sec/sec or 2 billion Gs:
A=G*m_2/r^2 = 2.2*10^{10} m/sec^2
Buckle your seatbelt!
It’s the square of the acceleration which determines the emitted power from an accelerated source, thus our difference between the falling test mass and the black hole will be a factor of 5.0*10^{12}.
That’s it!  OK lets recap the three relevant differences between our emitting systems and see how we did:
A)  Source magnitude squared-  Black holes ~ 3.6*10^{59} times larger
B)  Attenuation      –  Black holes ~2.2*10^{75} times smaller
C)  Acceleration squared – Black holes ~5.0*10^{12} times larger
Add it up and what do you get?  The gravitational radiation from the test mass hitting the ground could be about 1200 times stronger than the radiation from the distant alleged black hole merger.
Granted, this is a back of the envelope calculation.  The proper calculation of acceleration and radiation will take into account relativistic effects and precise orbital mechanics.  Stopping our massive test mass in a millisecond might not be possible.  But these are second order effects and the point remains: terrestrial sources of gravitational radiation should be visible if such distant sources are also visible.  Just imagine that you could drop much more massive object than 100kg, such as an asteroid.  Accelerations could also be larger than the 1000 Gs estimate.  A landslide might not be a great calibrated source but clearly would be a strong emitter.  How about 100 cars all colliding with a reinforced concrete wall simultaneously?  All in the name of science of course.  100 not enough?  Let’s make it 1000 in the second round of proposals.  CMEs might be a perfect test.
EDIT: the number one comment on this discussion is that in the far field we don’t really attenuate our radiation as fast as the cube of the distance.  If we assume that our detector is capable of detecting a variation in g field with amplitude which decreases only as the square of the distance, then it appears we are still some 20 orders of magnitude shy of reaching a similar signal with our test mass!   However this neglects the fact that most of the attenuation will occur before we reach the transition zone to the far field (“Fraunhofer region”), when our distance from the source becomes sufficiently far that we can ignore any internal dynamics.  What happens here is that the power in the near field falls off as the 4th power of distance (see MWT “Gravitation” for an explanation of why gravitational radiation is all quadrupolar).  If we take ~50 km as the wavelength of the radiation, then a rough estimate of this transition zone will be 100 km away from the source.  This provides a factor of 10^5^-4 = 10^-20  in attenuation of signal before we reach the far-field zone!  In other words, for the purposes of this estimate, we are very similar in our predication of amplitudes between our very nearby test mass and our extremely distant black hole merger.  Note that an even more simple estimate of total radiated power, followed by an assumption of spherical symmetry, does not capture the real attenuation due to the multipole nature of the radiation.  Our improved estimate leaves us with one order of magnitude lower signal from the test mass, in other words – we can multiply our test mass by 10 on increase the acceleration on it by 10 to match the signal of black hole mergers.          
Coincident with Gamma Ray Burst 
On Sept. 15, 2014, a LIGO signal was observed and coincident with this signal a gamma ray pulse was observed by the Fermi gamma ray telescope.  (!!!)  This was too close for coincidence, appearing 0.4 seconds later and the team calculated a 0.22% probability of such an event occurring randomly.  If this were bright enough it would alone confirm that LIGO was seeing something important and real (despite the lack of calibration).  Unfortunately the team from INTEGRAL gamma ray telescope put a damper on this sensational claim by putting a low upper limit on the gamma ray emission (they didn’t see a serious burst).  Another team re-analyzing the Fermi data concluded that there wasn’t much of a burst there either.  The jury is still out, for a review of the debate see  
I am a huge fan of interferometry science and the LIGO and VIRGO projects.  However we should be careful to jump to any conclusions at this stage of Big Science.  I expect that future gravitational wave observations will have something to say about the early conclusions here, and I especially await any team that can observe the radiation from a more local source, an asteroid impact or a CME or even a laboratory source could fit the bill.  Until then I would suggest more cautious language such as “we may have seen black holes merging”, or “signals consistent with black holes merging” as this exciting field isn’t to a high enough level to rule out other sources for the observed signals.
EDIT 2) 
There seems to be some pushback on the signal processing methods used to pull out the signal in the alleged observations:
It could also be that other known sources (other than CMEs, impacts mentioned earlier) could be used for calibration:

Genome-wide association meta-analysis of 78,308 individuals reveals this shit has gone too far

Everybody is a genius. But if you judge a fish by its ability to climb a tree, it will live its whole life believing that it is stupid.  — Albert Einstein

Mea Culpa

Hello everyone.  In the end, this post is going to make me look like an idiot in some way.  Why?  Because this is what is bound to happen when we speak about intelligence.   In this case I am willing to take this risk, to stick my neck out, because really – somebody’s got to do it.  This shit has gone way too far.


This post is inspired by a Nature Genetics article, and various media coverage of it.  There’s a whole lot wrong with this article and especially with the coverage of it but I’m going to break it down for you in three parts,:

  1.  Why “General intelligence” of a person is absolutely not a quantitative thing and why it makes you look very silly to pretend it is.
  2.   How correlation is not necessarily causation and how some condition being correlated with a genetic sequence absolutely does not mean that you can call the condition “genetic”.
  3.   How the entire procedure of looking for genetic roots of cleverness is  misguided, so badly so that it reflects very poorly on anyone who might pursue such a study.

So buckle up, here we go.

1)  IQ and g factor and “general intelligence”

To be fair, the authors of the Nature Genetics article in question wisely don’t refer to the IQ in their article.  However, some people do.  Quite intelligent people even fall for this, which is interestingly enough a good anecdote of how general intelligence can fail as a quantitative measure.   You get that?  Let me repeat it: the fact that even really smart people might fall for IQ as being a thing is evidence that IQ is not a thing.

The first glaring error people make is to imagine that there is a characteristic of a person called the IQ.  This is simply not what the word means.  IQ is a way of grading a person’s test score.  That’s all.  We can say “her IQ is high”, and this might be a perfectly fine thing to say in the proper context.  It’s a qualitative statement, there’s nothing wrong with that.  In the same sense you could say “He’s a really big guy” and again there’s nothing wrong with that.  But if you say that his bigness is 115, you probably will get some funny looks.  There are many interesting ways to describe different aspects of intelligence, but is there any use to assigning a scalar number to general intelligence?

General bigness.

The idea behind there being a general intelligence as an attribute came from the fact that people’s test scores on various tests are correlated.  A person who does really well on one test is more likely to do well on another test than a person who totally flunked the first test.  True enough.  And mathematically there is nothing wrong with expressing correlated measurements as a new average quantity plus a peculiar element.  For example in fluid dynamics we might find it advantageous to write the velocity of a molecule as a sum of the average bulk velocity of the fluid plus a peculiar velocity of this particular molecule.  So why not?

Consider then that when we look at various objects and consider their mass and their volume, we will find that they are correlated.  More massive objects are more likely to take up more space.  Why not then consider that there is a general bigness to objects?      We can call it the b factor.  There’s nothing preventing us from writing the mass of an object as some mass due to the general bigness of the object plus or minus a correction.  But what would we gain from such an analysis?   Well nothing, we would gain nothing and would be wasting our time.

Why?  Because we can see that general bigness is not addressing any quantity that helps us to model the world quantitatively.  Volume and mass (and density) are words and concepts that we can apply to every individual situation, not just averages.  General bigness is not such a creature.  General intelligence or g factor is exactly the same, simply not a quantitative object of an individual.

Of course there are smart people, and big objects, and good athletes.  Sure, our abilities to perform some physical activities are also going to be correlated.  Good runners are more likely to be good football players and even are more likely to be good swimmers or rock climbers.  Statistically.  But do we speak of people’s general athletic index a?  No, again it isn’t an immediately useful quantity to consider because it’s not a specific thing.

World Intelligence League

Lets imagine for a second that I’m wrong here, and that there is really a thing about a person, a somehow even slightly measurable thing, called their general intelligence.  In that case it would be possible to perform such a measurement in a rating system and to have a world champion and a ranking, just like is done for ski racing and chess.  You could form a world intelligence league and give people a rating when they join your club (lets call it 1000).  Then you could administer tests and see who did better in the tests, and contestants that had high ratings (2000+) would contribute with a higher weight to the new rankings after the test.  But who would choose the tests?  The problem is once again that there’s no measureable general intelligence to be found.  You also won’t be able to decide a clear “world’s best athlete” nor a clear “world’s best person”.  It’s because these aren’t quantities without a specific context.

If I say “he’s good” what do you think?   Your mind is likely to produce a context from thin air here, and assume I am talking about his behavior towards others, perhaps his ethics, or some such.  However if I follow with “at the free throw line” there’s a very different and clear meaning.  That’s why there’s no general goodness to be measured, no general bigness to be measured, no general athleticism to be measured, and no general intelligence to be measured.  Notice there’s also no general fastness (even though clearly people and machines will have race results of different distances or events correlated).  There’s no quantity we can measure called general healthyness, and there’s no quantity we can meausre called general musicianship.  Oh did I mention there’s also no quantity known as general intelligence?

OK this should be clear as day by now, if I continue it’s likely to be insulting your SAT score.  SAT score, Erdos number, olly height, chess rating, 3×3 rubics cube time – these are things one can quantify.  All of them require intelligence sure.   A person who is good at all these things is generally intelligent.  But pretending this person has a “g factor of X” just makes you look very silly doesn’t it.  Sillyness factor definitely 2.447.  I measured it.

2) It’s genetic 

Oh boy is this tiring.  Repeat after me: correlation is not causation!  Lets give some exapmles:

The world’s top 二胡 players have a genetic correlation present with Han people.  Is playing the 二胡 genetic?

Studies show a propensity of Finnish speakers to be correlated to genes producing low melanin content.  Is speaking Finnish genetic?

Older children have larger feet, and also score better on geometric arrangement tests.  Is geometric arrangement ability due to foot size?

Individuals from families are likely to share similar diets and lifestyles as well as similar genetic material and have similar diseases.  Are cancer and obesity genetic?

Some tests showed the presence of certain genes was correlated with people doing well on some test.  Does that mean the ability to take that test is genetic?

Of course it doesn’t mean that.

One reason people are jumping to such conclusions is that they have been asked a very silly question:  nature vs. nuture.  This is like asking what enabled you to commute to work in the morning: was it the gasoline or the steel frame of the car?  Well it was 80% steel frame and 20% gasoline according to some studies.  Do you believe me here?  Then why would you believe that something like intelligence might be x% hereditary?  The notion is absurd.   You need both gas and steel frame to get your car running, obviously.   Nobody’s going to talk about the great steel vs. gas debate of what powers cars and hopefully nobody will talk about nature vs. nurture anymore either.  If they do it’s because they are 60% lungs, 40% heart.

Don’t get me wrong,  it might very well be interesting for some reason that certain genes correlate with certain test scores.  It’s an observation one could make.  However this observation is not at all, in any sense, evidence that the test taking ability is genetic.

3)  Why the whole thing reflects sadly on those who might pursue this research

Consider for example test scores on predicting numeric sequences.  Sure, we’d like to do better at understanding how to identify patterns and use our imagination to see what underlying concept produces a given sequence.  Why not?   The idea as I understand it is that we are interested to improve ourselves and others – to get better scores.  And to find out how to get still better scores.

Well guess what?  The answer is immediately obvious – practice.  In none of the tests I’ve mentioned here, from cube solving to free throws to numeric sequences, is there any evidence that we are near a genetic limit.  Practicing always improves the score.

It really seems like bringing up genetics in the context of some intelligence tests is only a desperate tactic for those who really are scoring badly.  “It’s just not in my genes”.   Yeah right, in fact the problem is you didn’t practice as much as the other folks.

So quiet down about genetic factors of intelligence, we’re not buying it – instead, go practice a skill.  Take an SAT prep course to improve your score – or you could sit on the couch watching TV and blame your poor score on genetics.  Your choice.








Phone Review: The Blackberry “Priv”

I’ll be reviewing the blackberry “priv” phone today.

A couple of things attracted me to this rig: as you can tell it has buttons.  I like buttons.  Oddly enough a lot of people just aren’t used to them and prefer to use it only as a touch screen, but I find I can type a factor of at least 1.5 times faster using buttons.

Another thing I like is the power.   This thing has a decent enough camera, and can play videos, surf the web, navigate, order a taxi, astronavigate, or about any other thing you would like a computer to do.  In theory,  it has vastly more computing power than they had on board the Apollo missions or even than IBM Deep Blue had ready to defeat Gary Kasparov.

Finally, I like the name.  Why?  Because it makes me laugh heartily every time I think about it.  “Priv”, really?  Wait, this is a device that always records audio and video, as well as everything you type into it, and makes this data available to other parties.  Does that sound like privacy to you?  Hell to the no!   Let Falkvinge tell you how this games works.

But really it’s worse than that.  Sure, we can compare to something like an iPhone and see that the Android gives you a lot more freedom and privacy.  iPhone folks can’t even download and run their own software!  Er, appware I guess you call it today.  A lot of android users follow this model too as they do everything through Google and the Google Play Store.  Luckily I have found a small area of the world where most people don’t do that (China).

So what’s not to like about this thing?  Well, there’s no way to replace the battery or even take the battery out.  This means that after about a year your phone will be running out of power in 12 hours even with very modest use, and of course, that there’s no way to keep the “priv” from constantly recording your conversations (no, I don’t expect the power function to really work at that).

Another problem is that there’s no root access.  You might expect root access from a device billing itself to be private or security-minded, well, sorry.  So why would you want root access?  Well for one, you’d like to decide WHAT SOFTWARE IS RUNNING ON YOUR DEVICE.  Without root access this isn’t possible.  Every app you download can start itself up without your control.  OK so there are some things they can’t do without your permission, at least it appears that way, but really – if you wanted to control the device you’d have root access.  And if you wanted some kind of security or privacy you’d want to control the device.   Please let me know if I’m missing something here.

If you want to see something funny check out this discussion, in which blackberry representatives try to defend the stance of not letting the users own their own devices.  Basically it boils down the argument that you’ll be more secure if you get in the trunk and let me drive.

Well, it’s easy to complain about not being able to turn off various apps and watching the encrypted traffic flow in and out of your device with nothing you can do about it (actually it is possible to kill some processes but they keep popping back up)…

However, if you know these things and expect them – you can still get great mileage with this rig.  And the privacy could be a lot worse.  I’ve kept multiple bitcoins on this thing for years and never has any been stolen.  All in all it’s a great phone, would buy again.