
The Music of Streams

M. Douglas McIlroy

Dartmouth College, Hanover, New Hampshire 03755, USA

Abstract

Data streams make preeminent instruments for playing certain classical themes

from analysis. Complex networks of processes, effortlessly orchestrated by lazy eval-
uation, can enumerate terms of formal power series ad infinitum. Expressed in a
language like Haskell, working programs for power-series operations are tiny gems,

because the natural programming style for data streams fits the mathematics so
well—often better than time-honored summation notation.

The cleverest copyist is the one whose music is performed with the most ease
without the performer guessing why. — Jean Jacques Rousseau, Dictionary

of Music

1 Overture

Like persistent folk tunes, the themes I intend to play here have been arranged
for various ensembles over many years. Some performances have been angular,
and some melodic, but all share the staying power of good music. The themes
stick in mind, to be enjoyed again and again as each performance exposes new
surfaces and depths.

My subject is “power-stream compositions,” a phrase intended to suggest a
discipline of remarkable expressiveness and style, as well as compositionality.
Algorithms on power streams are succinct, beautiful, and inevitable in their
fitness for the purpose. As motivating examples for stream-based computing,
power streams are compelling in the same way that quicksort is for recursion.

I shall show power-stream compositions in two styles, with the unifying motif
of lazy lists. Power series are represented as sequences of coefficients. Operators
on series acquire values in order from their inputs, compute result values in
order, and deliver them as output. Input is never received ahead of the needs
of the output. Such operators are obviously compositional.

Preprint submitted to Elsevier Preprint 2 July 2000

In the first style, Horner form, a power series

f(z) = f0 + f1z + f2 z2 + f3 z3 + · · ·

= f0 + z(f1 + z(f2 + z(f3 + ...)))

is viewed recursively as a head term f0 and a tail power series f that satisfy
f(z) = f0 + zf(z). The series f is represented by the list [f0, f1, f2, f3, · · ·].

In the second style, Maclaurin form, a power series

f(z) = f(0) + f ′(0)z + f ′′(0)z2/2! + f (3)(0)z3/3! + · · ·

is viewed as a head term f(0) and a tail series, f ′, of the same form as f . The
tail is the derivative of f and satisfies

f(z) = f(0) +
∫ z
0 f ′(t)dt.

The series f is represented by the list [f(0), f ′(0), f ′′(0), f (3)(0), · · ·].

The list [1, 1, 1, 1, · · ·] interpreted in Horner form is the geometric series 1 +
z+z2+z3+· · ·. The same list interpreted in Maclaurin form is the exponential
series 1 + z + z2/2! + z3/3! + · · ·.

The lazy-list formulation relegates concerns about sequencing and storage
management to an evaluating engine. For example, in programming the usual
convolution formula for the product of power series,

ˇ(
∑

∞

i=0 fiz
i) × (

∑
∞

i=0 giz
i) =

∑
∞

i=0 zi
∑j=i

j=0 fjgi−j ,

one must keep book on a tangle of subscripts and on ever-growing arrays of
input coefficients. In the lazy list realization of Horner form, the program be-
comes a smooth one-liner:

(f0 : f) × g@(g0 : g) = f0g0 : f0 × g + g × f

The operators (:) and (@), taken from Haskell (Peterson and Hammond 1997),
denote the list constructor and the “as” operator: g@(g0 : g) means operand
g has structure (g0 : g).

1.1 Conventions

Polynomials may be represented as finite power series.

Operations on power series are defined by rules that tell how to compute the
head of the result and how recursively to compute the tail. In applying a rule,
the first subrule whose patterns match the operands is used. The anonymous
identifier names unused quantities. When a scalar operand occurs where a
list is expected, the scalar is converted to a one-element list of the expected
type. Thus, when f is a list of integers, 1 + f becomes [1] + f .

The rules are formal. There is no concern with analytic convergence or com-

2

putational divergence. Nor is there a guarantee that results will be uniquely
represented; any result may end in an arbitrary sequence of zeros. However,
any result given by the rules will agree with the analytically correct result
when such exists.

2 First theme: Horner form

A series f(z) = f0 + f1z + f2 z2 + · · · may be viewed as a head f0 and a tail
series f , so that

f(z) = f0 + z f(z),

with the list representation

f = f0 : f .

2.1 Arithmetic

Negative. −[] = []

−(f0 : f) = −f0 : −f

Sum. f + [] = f

[] + f = f

(f0 : f) + (g0 : g) = f0+g0 : f+g

Product. [] × = []

× [] = []

(f0 : f) × g@(g0 : g) = f0g0 : f0 × g + f × g

Quotient. [] / [] = error

[] / (0 :) = error

[] / = []

(0 : f) / (0 : g) = f / g

(f0 : f) / g@(g0 : g) = let q0 = f0/g0 in q0 : (f − q0 × g)/g

To verify the product rule, write the series in head-tail style, then expand the
product into a form that can be read in head-tail style:

f × g = (f0 + zf) × (g0 + zg) = f0g0 + z(f0 × g + f × g).

The last quotient rule expresses long division; it may be checked by multiplying
through by g.

3

Difference and nonnegative integer power may be defined in the usual way in
terms of negative, sum and product.

2.2 Composition and reversion

Expanding the composition f ◦ g of power series f and g in head-tail style
gives

f(g) = f0 + g × f(g)

= f + (g0 + zg) × f (g)

= (f0 + g0f(g)) + zg × f (g).

In general, the the head element of the output list cannot be calculated in
finite time: unfolding the parenthesized subexpression leads to an infinite sum
for the head element. We can proceed, however, when g0 = 0 (second rule
below), or when f is a polynomial (third rule).

Composition. [] ◦ = []

(f0 : f) ◦ g@(0 : g) = f0 : g × (f ◦ g)

(f0 : f) ◦ g@(g0 : g) = (f0 + g0f(g)) + (0 : g × f (g))

Reversion. revert (0 : f) = r where r = 0 : 1/(f ◦ r)

The latter rule, for reversion (functional inversion) of power series, may be
developed by expanding the identity f(r(z)) = z, where r(z) is the inverse
series and f(0) = 0.

The reversion rule is a tribute to the lucidity of power streams. Reversion
is sufficiently tricky to have inspired a considerable literature, rife with sub-
scripts. One of the more concise treatments (Knuth, 1969) takes half a page of
pseudocode to describe an algorithm equivalent to this working one-liner. The
restriction to operands with head term zero may be relaxed for polynomial
operands, as it was for composition.

2.3 Calculus

Let D be the differentiation operator. Since D(f0 + zf) = f + z(Df), we have

Derivative (slow). D(: f) = f + (0 : Df)

D = []

This formulation of the derivative takes O(n2) coefficient-domain additions
to compute n terms of the result. Trading away elegance, we may obtain an
O(n) algorithm by counting terms and using the fact that Dzn = nzn−1. The

4

integral, defined by
∫ z
0 f(t)dt, may also be calculated by counting terms. (I do

not know of a “slow integral” rule that hides the counting.)

Fast derivative. D[] = []

D(: f) = (h 1 f) where

h [] = []

h n (g0 : g) = ng0 : (h (n + 1) g)

Fast integral.
∫

[] = []
∫
f = 0 : (h 1 f) where

h [] = []

h n (g0 : g) = g0/n : (h (n + 1) g)

Example 1, elementary functions. Sine, cosine and exponential may be defined
as solutions of initial value problems,

D sin(x) = cos(x), sin(0) = 0

D cos(x) = − sin(x), cos(0) = 1

D exp(x) = exp(x), exp(0) = 1

Integration converts the differential equations to a neat program:

sin =
∫

cos

cos = 1 −
∫

sin

exp = 1 +
∫

exp

Example 2, fast exponential. Calculation of n terms of exp(f(z)), where f(0) =
0, by the program exp ◦f takes O(n3) coefficient-domain operations (Knuth,
1969). Gilles Kahn exploited the fact that exp(f) is a solution of y′ = yf ′ with
y(0) = 1 to get an O(n2) method:

exp ◦f = y where y = 1 +
∫
(y × Df).

Example 3, square root. A power series f with constant term 1 has a square
root q, of the same form, that satisfies q2 = f . Hence

2qDq = Df

Dq = Df/2q

q = 1 +
∫

Df/2q

from which follows the program

sqrt f@(1 :) = q where q = 1 +
∫
(Df/(2q)).

5

Example 4, tough tests. Classical identities provide a trove of tests of power-
series code. A simple test that exercises every basic operation is to check an
initial segment of the series T defined by

t = [0, 1]

arctan =
∫
(1/(1 + t2))

tan = revert arctan

T = tan− sin / cos

Every term of T should vanish.

2.4 Variation: multivariate series

Coefficients in a power series may have any type for which the usual arithmetic
functions are defined and finite and for which multiplication is commutative.
In particular coefficients may be univariate polynomials, in which case the
series is said to be in nested form.

Example 5, Pascal triangle. The generating function for the binomial coeffi-
cients of order n is (1 + y)n. To enumerate the binomial coefficients for all n,
we may replace z in the geometric series 1+ z + z2 + z3 + · · · by (1+y)z. That
is, we compose the generating function for the geometric series, 1/(1−z), with
the polynomial 0 + (1 + y)z:

(1/[1,−1]) ◦ [[0], [1, 1]]

The result is the Pascal triangle,

[[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1], · · ·].

2.4.1 Homogeneous form

It is often convenient to group terms of a bivariate power series in x and y by
total degree, with the nth group being a homogeneous polynomial of degree
n. The groups may be carried as coefficients in a power series in z:

f(x, y, z) = (f00) + (f10x + f01y)z + (f20x
2 + f11xy + f02y

2)z2 + · · ·

Since the degree of any variable in a term is determinable from the degree
of the other two, we can elide any one variable—i.e. set the variable to 1.
Since elision commutes with addition and multiplication, there is a direct
isomorphism between the ring of nested-form series f(1, y, z) and the ring
of homogeneous-form series f(x, y, 1). We can exploit this isomorphism to
compute with homogeneous-form series.

The following rules take partial derivatives of a homogeneous-form series.
The y-derivative of the homogeneous polynomial f1(x, y) is calculated by

6

applying the ordinary derivative operator to the isomorph f1(1, y). The x-
derivative works on the isomorph f1(x, 1), whose terms come in reverse or-
der. So that the first term that operator D sees is the term of x-degree
zero, f1 must have exactly n + 1 terms, where n is the total degree of f1.

Partial derivative Dy(: f@(f1 :)) = (D f1) : (Dy f)

Dy = []

Dx(: f@(f1 :)) = (reverse · D · reverse)f1 : (Dx f)

Dx = []

The operator (·) is ordinary functional composition. It is distinguished from
(◦), which applies to sequences, not functions.

Example 6, more tough tests. The identities ex+y = exey and Dxe
x+y = ex+y

yield test functions, T1 and T2, that should evaluate to zero.

x = [[0], [1, 0]]

y = [[0], [0, 1]]

T1 = (exp ◦ (x + y))− (exp ◦x) × (exp◦ y)

T2 = Dx(exp ◦ (x + y)) −Dy(exp◦ (x + y))

These tests are truly vigorous exercises that take O(n5) rational operations to
carry out to n terms.

3 Second theme: Maclaurin form

In Maclaurin form, a power series is represented by the list of derivatives
evaluated at the origin:

[f(0), f ′(0), f ′′(0), f (3)(0), · · ·].

The representation of the derivative f ′ is the tail of the representation of f .
Writing f0 = f(0), we have

f = f0 : f ′

Operator (:) is the ordinary list constructor, decorated as a reminder that it
now constructs Maclaurin form.

Derivative and integral operators shift sequences left or right. Some arithmetic
rules and the reversion rule are the same as for Horner form. Only distinctive
rules are given here. In particular, rules for empty lists are omitted. The rules
for arithmetic and composition are direct consequences of the usual formulas
for derivative of product and quotient, and the chain rule, (f(g))′ = f ′(g)g′.

Derivative. D(: f ′) = f ′

7

Integral.
∫
f = 0 : f

Product. f@(f0 : f ′) × g@(g0 : g′) = f0g0 : (f × g′ + g × f ′)

Quotient. f@(f0 : f ′) / g@(g0 : g′) = q where q = f0/g0 : (f ′ − q × g′)/g

Composition. (f0 : f ′) ◦ g@(0 : g′) = f0 : (f ′ ◦ g) × g′

Conversion from Horner to Maclaurin form (hm) and vice versa (mh) are
straightforward.

Conversions. hm[] = []

hm(f@(f0 :)) = f0 : hm(Df)

mh[] = []

mh(f0 : f ′) = f0 +
∫
mh(f ′)

3.1 Behavioral differential equations

Relations written in the form y = y0 : y′ are called behavioral differential equa-

tions (Rutten, 1999), or BDEs.

Example 7, elementary functions. From the differential equations for the ele-
mentary functions (Example 1) we read off these BDEs:

sin = 0 : cos

cos = 1 : − sin

exp = 1 : exp

Executing any of these functions—a trivial exercise—yields a sequence
of derivatives evaluated at the origin. The sequence for the cosine is
ˇ[1, 0,−1, 0, 1, 0,−1, 0, · · ·].

3.2 Doing math

The power-stream idea, though born in computing, is fruitful in mathematics,
too. Derivations of mathematical relationships among objects defined by BDEs
can be quite direct and elegant.

Example 8, reciprocal of the exponential. Verify the identity 1/ex = e−x,
knowing only that ex denotes the solution of exp = 1 : exp. Let

8

q = 1/ exp

= 1 : 1′ − q exp′ / exp Quotient rule

= 1 : − q exp / exp Example 7, Derivative rule

= 1 : − q

z = [0, 1]

r = exp ◦(−z)

= (1 : exp) ◦ (−z) Example 7

= 1 : (exp′ ◦(−z)) × (−z)′ Composition rule

= 1 : (exp ◦(−z))× (−1) Example 7, Derivative rule

= 1 : − r

Since q and r satisfy the same behavioral differential equation, the desired
result holds. Notice that the calculation deals with infinite objects without
using sums or limits. It instead uses properties of the fixed points of BDEs.

Example 9, Bell numbers. The numbers Bn count distinct ways to distribute n
distinguishable objects among indistinguishable boxes (Bell 1934). They have
an exponential generating function

B(z) =
∑

∞

n=0 Bnz
n/n! = eez

−1

Thus the Bell numbers are produced by the program

bell = exp ◦(exp−1)

= exp ◦((1 : exp) − 1) Example 7

= exp ◦(0 : exp)

It is a pleasant exercise to show that

bell = 1 : bell × exp

is equivalent; both programs produce

[1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, · · ·].

4 Coda

4.1 Complexity

Efficiency can vary dramatically with algorithm. Section (2.3) gives O(n2) and
O(n) rules for the derivative. Example 2 gives O(n3) and O(n2) algorithms
for calculating the exponential of a series. More dramatically, the product op-

9

erators for Maclaurin and Horner forms respectively take O(2n) and O(n2)
coefficient-domain operations to compute n terms. Evidently it would be ad-
vantageous to compute the product of Maclaurin-form series by bypassing
(Melzak 1983) to Horner form and back. On the other hand, it takes O(n)
coefficient-domain operations to compute n terms of the elementary functions
in either form.

4.2 Power streams as system tests

Besides exercising the basic rules, the “tough tests” of Examples 4 and 6
also severely stress implementations of lazy-list languages, and of stream-
processing systems similar to CSP (Hoare, 1985). Example 4 alone has shown
up bugs or severe capacity limitations in several systems and languages in
which I have tried them. Fortunately, all were promptly fixed by responsive
implementers.

4.3 Real Haskell

While the programs above deviate from pure Haskell only in minor typographic
ways, they omit details of operator overloading for the sake of accessibility.
The full story of how to make the code work in Haskell is given by McIlroy
(1999).

4.4 Influences

Power-stream compositions, once mainly an oral tradition, have begun to take
their place in the literature, Two remarkable papers, by Karczmarczuk (1997)
and by Pavlović and Escardó (1998), exploit the two forms. Karczmarczuk
deals mainly with special functions of mathematical physics in Horner form.
Pavlović and Escardó examine Maclaurin form and related representations
from an algebraic standpoint, and advocate power streams as a productive
formalism for calculus. McIlroy discusses Horner form as an application of
Haskell, and Hehner (1993) integrates the subject with the logic of programs.
Rutten (1999) relates Maclaurin form to automata theory.

10

4.5 Resolution

As the music of power streams, always fascinating, has been arranged for
successively more agile instruments, the melodic form has become purer and
more alluring. Early performances of power streams resembled concerts of
street cries, in which transactions were shouted out among producers and
consumers: “Get me a term, oh/ Here is your term, oh”—a striking but stolid
form. Scored now for a well tuned organ of lazy evaluation, the genre has, I
trust, become worthy of performance for that prince of computing, Edsger W.
Dijkstra.

References

[1] Bell, E. T. 1934. Exponential numbers. American Mathematical Monthly 41: 411-
419.

[2] Hehner, E. C. R. 1993. A Practical Theory of Programming, 143-148. Springer.

[3] Hoare, C. A. R. 1985. Communicating Sequential Processes. Prentice-Hall.

[4] Karczmarczuk, J. 1997. Generating power of lazy semantics. Theoretical

Computer Science, 9: 203–219.

[5] Knuth, D. E. 1969. The Art of Computer Programming, Volume 2,

Seminumerical Algorithms, §4.7. Addison-Wesley.

[6] McIlroy, M. D. 1999. Functional pearl: power series, power serious. Journal of

Functional Programming, 9: 323–335; also at

http://www.cs.dartmouth.edu/~doug/haskell/pearl.ps.gz.

[7] Melzak, Z. A. 1983. Bypasses: a Simple Approach to Complexity. John Wiley &
Sons.

[8] Pavlović, D. and Escardó, M. H. 1998. Calculus in coinductive form, Proceedings

of the 13th Annual IEEE Symposium on Logic in Computer Science, 408–417.

IEEE Computer Science Society Press.

[9] Peterson, J. and Hammond, K. (editors) 1997. Report on the Programming

Language Haskell. Available from http://www.haskell.org.

[10] Rutten, J. J. M. M. 1999. Automata, power series, and coinduction: taking input

derivatives seriously. Proceedings of ICALP ’99, J. Wiedermann, P. van Emde
Boas and M. Nelson, editors, 645–654. Springer LNCS 1644.

11

